

Mark Hinsley Arboricultural Consultants Ltd.

Membership No.FE00604

MSc Res Man (Arb), OND (Arb), F.Arbor.A

Established 1994

Tel: 01202 876177 Company Reg. No. 07232825 VAT Reg. No. GB 730399627 Reg. Office Address: Office F11, 10 Whittle Road, Ferndown, Dorset, England BH21 7RU

Our Ref: IH/RoysdeanManor,BH13PT/sur/imp

10th July 2025

email: markhinsley@treeadvice.info

email: ivanhinsley@treeadvice.info

email: enquiries@treeadvice.info

email: johnchristopher@treeadvice.info

Roysdean Manor Management Ltd, 5 Derby Road c/o NMC Property Ltd 161 Old Christchurch Road Bournemouth BH1 1JU

Dear Roland

TREES AT ROYSDEAN MANOR, 5 DERBY ROAD, BOURNEMOUTH, BH1 3PT.

Brief:

Survey trees that have a potential impact on the proposed erecting of fencing at Roysdean Manor, 5 Derby Road, Bournemouth, BH1 3PT, from the plans provided. Comment upon their condition, suitability for retention and the impact they may have upon the proposed fencing.

Date of Inspection: 10.07.25 **Inspected by:** Ivan Hinsley BSc

Survey method: On foot ground level visual.

Findings:

From the on-site, ground level survey that was conducted at Roysdean Manor, 5 Derby Road, Bournemouth, BH1 3PT, 13 individual trees were identified as potentially having an impact on the proposed erecting of fencing as shown on the plans provided.

The site is currently covered by an Area Tree Preservation Order (TPO). Area TPO 1971 Knyveton Road, Woodford Road and Derby Road, reference E114 protects the trees on the site named in the report as A2. The trees covered are "The numerous trees of whatever species standing within the area bounded by the dotted black lines."

Image 1 below shows the location of the dotted black line that includes Roysdean Manor, 5 Derby Road, Bournemouth, BH1 3PT.

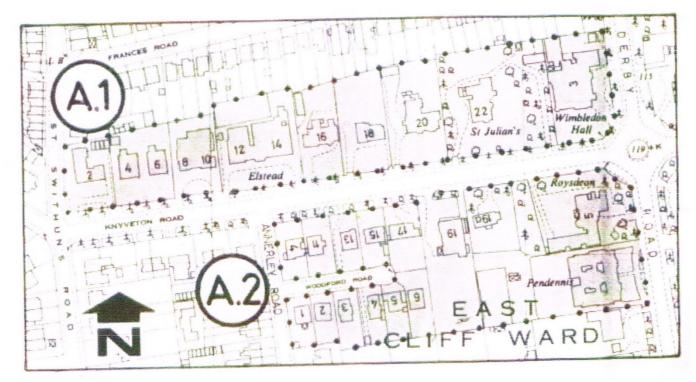


Image 1

TREE SURVEY FOR ROYSDEAN MANOR, 5 DERBY ROAD, BOURNEMOUTH, BH1 3PT.

Survey Technique

The surveyed trees were visually assessed from ground level as far as access allowed. No climbing inspections or invasive examination techniques were carried out. Access to some trees was restricted, in such cases the descriptions of the trees given in the survey schedule are subject to the tree being free of significant defects that were not clearly visible. Detail on the individual trees assessed is given in the survey schedule using the format in BS5837: 2012 'Trees in Relation to Design, Demolition and Construction – Recommendations', please read in conjunction with the enclosed Tree Survey Plan.

The columns and abbreviations used are:

Column 1 = T - Tree number marked on the submitted plan.

Column 2 = The Latin binomial and common name if applicable.

Column 3 = Hgt – Approximate tree height, in metres; to the nearest 0.5m if under 10m.

Column 4 = Dbh – Diameter (rounded to the nearest 10mm). Single stemmed trees, at 1.5m above ground level. Low branched trees, at the narrowest point below the fork. Trunks with irregular swellings, at the narrowest point below the swelling. Multi stemmed trees, each stem measured at 1.5m above ground level. # estimated value if unable to gain access.

Column 5 = RPA – The Root Protection Area: radius measured in metres from the centre of the trunk.

Column 6 = B/S - Approximate branch spread to the four cardinal points of the compass, in meters.

Senior Consultant: Mark Hinsley MSc Res Man(Arb), OND(Arb), F.Arbor.A. Consultant: John Christopher FdScArb, HNC Building Studies, M.Arbor.A. Arboriculturalist: Ivan Hinsley BSc Support staff: Claire Perry, Teresa O'Neale

email: markhinsley@treeadvice.info email: johnchristopher@treeadvice.info email: ivanhinsley@treeadvice.info email: enquiries@treeadvice.info Column 7 = FSB – Height of first significant branch above ground level in meters and direction of growth

Column 8 = C/C – Height of canopy above ground level, in meters.

Column 8 = Age - Age class as representation of passage through normal life cycle - Y=Young,

SM= Semi-Mature, EM = Early Mature, M=Mature, FM = Fully Mature, OM = Over Mature.

Column 9 = R/C – Estimated remaining contribution, in years.

Column 10 = Cat - BS5837: 2012 Survey category.

Categories are:-

U Trees unsuitable for retention (Red on plan)

Trees that cannot realistically be retained, in the context of the current land use, for longer than 10 years.

A Trees of high quality (Green on plan)

Trees able to make a substantial contribution for a minimum of 40 years.

Particularly good examples of trees, or essential components of groups of arboricultural features e.g. avenues. Visual importance or significant conservation, historical or other value. Veteran trees, especially if ancient.

B Trees of moderate quality (Blue on plan)

Those in such a condition as to be able to make a significant contribution for a minimum of 20 years. Might be category A but have defects or lack special qualities; or growing in a high value group. Has conservation or cultural values.

C Trees of low quality (Grey on plan)

Unremarkable trees of limited merit, with a life expectancy of at least 10 years; or growing in a low value group. Also young trees with a stem diameter of below150mm.

Column 11 = General Observations - notes re structural and/or physiological condition, and/or preliminary management recommendations.

SURVEY SCHEDULE

T	Name & Species	Hgt	Dbh	RPA	B/S	C/C	Age	R/C	Cat	General Observations
1	Acer	14	540	6.5	N 6	5	M	40+	В	Historical wound on
	pseudoplatanus				E 4	5				west side at 1.8m and
					S 3	8				0.5m. Bifurcation at
	Sycamore				W 4	6				1.9m. Good vigour
					FSB					
2	Pinus sylvestris	14	320	3.8	N 6	8	M	10-	C	Dead wood in canopy.
					E 6	8		20		Low vigour.
	Scots Pine				S 5	8				
					W 5	8				
					FSB					
3	Ilex aquifolium	8			N				U	Standing dead tree.
					Е					Covered in ivy.
	Holly				S					
					W					
					FSB					
4	Ilex aquifolium	9			N				U	Standing dead tree.
					E					Covered in ivy.
	Holly				S					
					W					
					FSB					

email: markhinsley@treeadvice.info

email: ivanhinsley@treeadvice.info

email: enquiries@treeadvice.info

email: johnchristopher@treeadvice.info

T	Name & Species	Hgt	Dbh	RPA	B/S	C/C	Age	R/C	Cat	General Observations
5	Pinus pinaster	20	610	7.3	N 10	10	M	40+	В	Lean to north due to
					E 3	10				phototropism.
	Maritime Pine				S 3	10				Competing with T6.
					W 5	10				
					FSB					
6	Quercus ilex	18	730	8.8	N 6	4	M	40+	В	Bifurcation at 2m. Good
					E 4	3				vigour.
	Holm Oak				S 6	6				
					W 7	4				
7	Ou anaug nahun	12	270	3.2	FSB N 8	4	EM	40+	В	Historical loss of ton
/	Quercus robur	12	270	3.2	E 6	4	EIVI	40+	D	Historical loss of top.
	Oak				S 6	4				Ivy covered. Suppressed by adjacent trees.
	Oak				W 3	4				by adjacent nees.
					FSB	*				
8	Ilex aquifolium	12	290	3.5	N 3	1	M	10-	С	Low vigour. Ivy up
	1 3				E 2	1		20		main stem. Low leaf
	Holly				S 1	1				density.
					W 3	1				
					FSB					
9	Acer saccharum	13	240	2.9	N 5	5	EM	40+	A	Good vigour. Good
					E 3	5				structure.
	Sugar Maple				S 4	2				
					W 3	5				
					FSB					
10	Acer saccharum	14	360		N 5	6	M	40+	В	Bifurcation at ground
			200		E 3	6				level. Northeast stem
	Sugar Maple		90		S 4	6				multi-stemmed at 1m.
			120		W 5	6				Stems rubbing at 1.5m.
11	Quercus ilex	16	550		FSB N 6	6	M	40+	В	Bifurcation at 2m. Twist
11	Quercus tiex	10	330		E 2	$\frac{0}{2}$	IVI	40+	D	in stem.
	Holm Oak				S 5	$\frac{1}{2}$				in stem.
	Homi Oak				W 5	4				
					FSB	-				
12	Pinus sylvestris	16	510		N 6	9	M	40+	В	Phototropism lean to
			010		E 3	9				north. Good vigour.
	Scots Pine				S 3	9				
					W 4	9				
					FSB					
13	Pinus sylvestris	15	520		N 6	7	M	40+	В	Some dead wood in
	,				E 2	5				canopy. Good vigour.
	Scots Pine				S 3	7				
					W 4	7				
					FSB					

email: markhinsley@treeadvice.info email: johnchristopher@treeadvice.info email: ivanhinsley@treeadvice.info email: enquiries@treeadvice.info

General Constraints:


Trees placed in the removal 'U' category are assessed upon their condition and not on any planning proposals which may require the removal of the tree for other reasons; category U trees are unsuitable for retention in a development context and should be removed for sound arboricultural reasons.

When considering the retention of trees in a planning context, preference should be given to retaining trees in categories A and B as these are the trees that contribute most to the amenity of the site and surroundings for the longest time.

Category C trees are of lesser importance; they would not usually be retained where they would impose a significant restraint on development.

Groups of even low value trees may have a collective screening or group value in the landscape that is higher than the individual categories of the component trees might suggest.

The enclosed tree survey plan indicates the initial root protection areas produced from the survey data. The Root Protection Areas (RPAs) for the trees have been calculated using the formula given in BS5837:2012. This is the recommended area around the tree in square metres within which no construction, excavation, soil stripping, level changes or other potentially harmful activities should take place unless appropriate precautions or techniques are employed to avoid root damage. Barriers should protect this area for the duration of any development works to avoid damage to the root system.

email: markhinsley@treeadvice.info

email: ivanhinsley@treeadvice.info

email: enquiries@treeadvice.info

email: johnchristopher@treeadvice.info

Conclusion:

From the plans provided of the proposed erection of fencing at Roysdean Manor, 5 Derby Road, Bournemouth, BH1 3PT, T1, T2, T5, T6, T7 and T8 are potentially impacted, as shown on drawing 7741. T3 and T4 are not a consideration as they have been categorised as U; they are standing dead trees.

BS5837:2012, Trees in relation to design, demolition and construction – Recommendations, 5.3.1 If operations within the RPA are proposed, the project arboriculturist should: Demonstrate that the tree can remain viable and that the area lost to encroachment can be compensated for elsewhere, contiguous with the RPA. The encroachment of the proposed fencing at Roysdean Manor, 5 Derby Road, Bournemouth, into the RPAs of T1, T2, T5, T6, T7 and T8 is less than 1.5% in total. Table 1 shows the individual values. This can easily be compensated for within the garden area to the south of the trees or within the boundary area to the east or west of the trees.

Tree number	RPA area (m2)	No. of posts (m2)	Post hole area (m2)	% encroachment	
T1	132.7	3	0.21	0.16	
T2	45.4	2	0.14	0.31	
T5	167.4	5	0.35	0.21	
Т6	243.3	6	0.42	0.17	
Т7	32.2	1	0.07	0.22	
Т8	38.5	2	0.14	0.36	

Table 1

We believe that T1, T2, T5, T6, T7 and T8 have sufficient energy reserves to be able to adapt to the new circumstances that the trees will find themselves in. Trees naturally prune their own roots and grow new, more productive ones every growing season, up to 30% of their root network. We would suggest that the work is undertaken from August through to March ideally, because the broadleaf trees are past their optimum energy production months and are starting to tail off into the dormant months of the winter.

The area of the post hole has been calculated from the recommended hole diameter of 300mm for the erection of the fence posts described in the plans provided. The depth of these holes is not as important as the diameter as once the hole is below 600mm the likelihood of it impacting the roots of a tree greatly reduce.

We would also suggest that once the fencing is erected a planting scheme that reflects the need to keep out unwanted trespassers and develop a privacy screen is implemented. Planting dense spikey plants will greatly improve the security of the site for the residents and will also encourage wildlife to these undisturbed secure areas. Native hedging plants such as Blackthorn (Prunus spinosa), Hawthorn (Crataegus monogyna) and Holly (Ilex aquifoliaceae) have been used for centuries by farmers to contain their livestock; they are also a great source of food for our native wildlife. Other non-native shrubs belonging to the Pyracantha genus which are large, thorny and evergreen or the Berberis genus that have spiny branches with colourful foliage and attractive berries would also add to the spikey deterrent and food sources for the wildlife.

We believe that the erection of fencing at Roysdean Manor, 5 Derby Road, Bournemouth, BH1 3PT, as shown on the plans provided, would not have a detrimental impact on the health and longevity of the trees that were surveyed. The rightful enjoyment of one's property applies to all, and we believe that the residents will be able to enjoy living in this property again once the fencing is erected and the understory planting is established. To confirm, we believe the trees should not be a reason to decline the erection of fencing at Roysdean Manor, 5 Derby Road, Bournemouth, BH1 3PT, as shown on the plans provided.

Method of construction:

To erect the fencing in a way that has the least impact on the trees the post holes should be no bigger than 300mm in diameter. The post holes should be hand dug to a depth of 600mm and then a mechanical auger can be used to finish off the post holes to the required depth. No roots larger than 25mm should be severed without consultation with the project arborist or local authority tree officer, and if this is authorised, it should be done with a sharp implement to prevent tearing. The position of a post hole will need to be adjusted if it is found that an important structural root dissects the post hole and cannot be severed.

When backfilling the post holes with concrete, the post holes should be lined with a watertight liner that will prevent the leaching out of any compounds. Cement is a calcareous compound which has the ability to modify the pH of the surrounding soil to a level that has the potential to cause harm to the trees, which is why it needs to be contained

These requirements should be discussed with the appointed contractor before works are undertaken so they are aware of the methods that are required to protect the trees from harm.

If you require any further information at this stage, please do not hesitate to contact us.

Yours sincerely

Ivan Hinsley

Arboriculturalist: Ivan Hinsley BSc

Support staff: Claire Perry, Teresa O'Neale